
1

Vectors and Transforms

In

3D Graphics

Skämtbild om matte på KTH-animationskurs

Reading instructions
MUST

• Read the following slides and

• OH 27-44 by Magnus Bondesson

• Article ”Från Värld till Skärm” by Magnus Bondesson.
– Except section 10 which is postponed until lecture on Texturing

– Article can be downloaded from course’s web page

• ”Intoduktion till OpenGL” by Magnus Bondesson
– Read section 1-9.

You may also read:

• Angel
– chapter 4, pages 157-228

or

• Real-Time Rendering,
– chapter 3 - Transforms

Tomas Akenine-Mőller © 2002

WhyWhy transforms?transforms?

� We want to be able to animate objects

and the camera

– Translations

– Rotations

– Shears

– And more…

� We want to be able to use projection

transforms

Tomas Akenine-Mőller © 2002

HowHow implementimplement transforms?transforms?

� Matrices!

� Can you really do everything with a

matrix?

� Not everything, but a lot!

� We use 3x3 and 4x4 matrices

















=
















=

222120

121110

020100

mmm

mmm

mmm

p

p

p

z

y

x

Mp

Tomas Akenine-Mőller © 2002

v
e
r
t
e
x

Modelview

Matrix

Projection

Matrix

Perspective

Division

Viewport

Transform

Modelview

Modelview

Projection

�

�

�

object eye clip normalized

device
window

� other calculations here
– material � color
– shade model (flat)
– polygon rendering mode
– polygon culling
– clipping

Transformation
Pipeline
TransformationTransformation
PipelinePipeline

OpenGL | Geometry stage | Mainly on GPU Tomas Akenine-Mőller © 2002

camera

Model space

Word space

View space

Model to World

Matrix

World to

View

Matrix

ModelViewMtx = Model to

View Matrix

2

Tomas Akenine-Mőller © 2002

HowHow dodo I I useuse transforms transforms
practicallypractically??

� Say you have a circle with origin at

(0,0,0) and with radius 1 – unit circle

� glTranslatef(8,0,0);

� RenderCircle();

� glTranslatef(3,2,0);

� glScalef(2,2,2);

� RenderCircle();

Tomas Akenine-Mőller © 2002

ContCont’’dd from from previousprevious slideslide
A simple 2D A simple 2D exampleexample

� A circle in model space

x

y

glTranslatef(8,0,0);

glTranslatef(3,2,0);

glScalef(2,2,2);

Rotation (2D)

Consider rotation about the origin by θ degrees

–radius stays the same, angle increases by θ

x’=x cos θ –y sin θ

y’ = x sin θ + y cos θ

x = r cos φ
y = r sin φ

x = r cos (φ + θ)
y = r sin (φ + θ)

Tomas Akenine-Mőller © 2002

Derivation of rotation Derivation of rotation matrixmatrix in 2Din 2D

T

T

yx

TT

yx

iii

i

r

rnn

rrpp

ir

r

iir

erepe

irre i
e

))cossinsin(cos

),sinsincos(cos(),(

)sin,cos(),(

)cossinsin(cos

)sinsincos(cos

)]sin)(cossin[(cos

)sin(cos]by mult is[rotation

φαφα

φαφα

φφ

φαφα

φαφα

φφαα

φφ
φαα

φ α

+

−==

==

+

+−=

=++=

===

+==

n

p

n

p

?pRn z=

p

n

α

Tomas Akenine-Mőller © 2002

Derivation 2D rotation, Derivation 2D rotation, contcont’’dd


















 −
=











=

+

−==

==

y

x

y

x

zz

T

T

yx

TT

yx

p

p

z

n

n

r

rnn

rrpp

44 344 21
R

RpRn

n

p

αα

αα

φαφα

φαφα

φφ

cossin

sincos

? is what

))cossinsin(cos

),sinsincos(cos(),(

)sin,cos(),(

Tomas Akenine-Mőller © 2002

Rotations in 3DRotations in 3D

� Same as in 2D for Z-rotations, but with a

3x3 matrix

� For X

� For Y

















−

=

















−=















 −

=⇒






 −
=

αα

αα

α

αα

ααα

αα

αα

α
αα

αα
α

cos0sin

010

sin0cos

)(

cossin0

sincos0

001

)(

100

0cossin

0sincos

)(
cossin

sincos
)(

y

x

zz

R

R

RR

3

Tomas Akenine-Mőller © 2002

Translations must be simple?Translations must be simple?

� Rotation is matrix mult, translation is add

� Would be nice if we could only use matrix

multiplications…

� Turn to homogeneous coordinates

� Add a new component to each vector

nRptpp =+=
















???

???

???

Rotation n Translatio

Tomas Akenine-Mőller © 2002

HomogeneousHomogeneous notationnotation

� A point:

� Translation becomes:

� A vector (direction):

� Translation of vector:

� Also allows for projections (later)

1

1

)(

1000

100

010

001





















+

+

+

=









































zz

yy

xx

z

y

x

z

y

x

tp

tp

tp

p

p

p

t

t

t

44 344 21
tT

()Tzyx ppp 1=p

()Tzyx ddd 0=d

dTd =

Tomas Akenine-Mőller © 2002

� Just add a row at the bottom, and a
column at the right:

� Similarly for X and Y

� det(R)=1 (for 3x3 matrices)

� Trace(R)=1+2cos(alpha) (for any
axis,3x3)

Rotations in 4x4 formRotations in 4x4 form



















 −

=

1000

0100

00cossin

00sincos

)(
αα

αα

αzR

Tomas Akenine-Mőller © 2002

� In , the rotation is done first

MoreMore basicbasic transformstransforms

� Scaling

� Shear

� Rigid-body: rotation then translation

TRX =
� Concatenation of matrices

TRRT ≠
TRX =

� Inverses and rotation about arbitrary axis:
� Rigid body: X-1 = XT

� Not commutative, i.e.,

Change of Frames
Computing the matrix MQ→P that transforms a vertex
from coordinate system Q (e.g. model space) into
coordinate system P (e.g. world space):

P0 x

y

z

Q0

a
b

c
















=→

zzz

yyy

xxx

PQ

cba

cba

cba

M

(0,5,0)

Ex: pP = MQ→P pQ = MQ→P (0,5,0)
T = 5 b

Tomas Akenine-Mőller © 2002

Normal transformsNormal transforms
Not so normalNot so normal……

� M works for rotations and translations, though

() MMN of instead :Use 1 T−=

� Cannot use same matrix to transform normals

4

Tomas Akenine-Mőller © 2002

The The EulerEuler TransformTransform

)()()(),,(hprrph yxz RRRE =

� Assume the view looks down

the negative z- axis, with up in

the y- direction, x to the right

� h=head

� p=pitch

� r=roll

� Gimbal lock can occur – looses one degree of

freedom

� Example: h=0,p=π/2, then the z- rotation is the
same as doing a previous rot around y-axis Tomas Akenine-Mőller © 2002

QuaternionsQuaternions

� Extension of imaginary numbers

� Avoids gimbal lock that the Euler could

produce

� Focus on unit quaternions:

wzyx

wzyxwv

qkqjqiq

qqqqq

+++=

==),,,(),(ˆ qq

1)ˆ(2222 =+++= wzyx qqqqn q

� A unit quaternion is:

1|||| where)cos,(sinˆ == qq uuq φφ

Tomas Akenine-Mőller © 2002

Unit Unit quaternionsquaternions are are perfectperfect for for
rotations!rotations!

� Compact (4 components)

� Can show that 1ˆˆˆ −
qpq

� Interpolation from one quaternion to another is
much simpler, and gives optimal results

� …represents a rotation of

2φ radians around uq of p

)cos,(sinˆ φφ quq =

� That is: a unit quaternion represent a

rotation as a rotation axis and an angle

� OpenGL: glRotatef(ux,uy,uz,angle);

Tomas Akenine-Mőller © 2002

ProjectionsProjections

� Orthogonal (parallel) and Perspective

Tomas Akenine-Mőller © 2002

OrthogonalOrthogonal projectionprojection

� Simple, just skip one coordinate

– Say, we’re looking along the z-axis

– Then drop z, and render





















=





















⇒





















=

1

0

1

1000

0000

0010

0001

y

x

z

y

x

orthoortho

p

p

p

p

p

MM

z z

Tomas Akenine-Mőller © 2002

OrthogonalOrthogonal projectionprojection

� Not invertible! (determinant is zero)

� For Z-buffering

– It is not sufficient to project to a plane

– Rather, we need to ”project” to a box

eye

image plane near

far

Unit cube: [-1,-1,-1] to [1,1,1]

� Unit cube is also used for perspective proj.

� Simplifies clipping

5

Tomas Akenine-Mőller © 2002

OrthogonalOrthogonal projectionprojection

� The ”unitcube projection” is invertible

� Simple to derive

– Just a translation and scale

left right

bottom

top

n
e
a
r

fa
r

Tomas Akenine-Mőller © 2002

WhatWhat aboutabout thosethose homogenenoushomogenenous
coordinatescoordinates??

()Twzyx pppp=p

� pw=0 for vectors, and pw=1 for points

� What if pw is not 1 or 0?

� Solution is to divide all components by pw

()Twzwywx pppppp 1///=p

� Gives a point again!

� Can be used for projections, as we will

see

Tomas Akenine-Mőller © 2002

PerspectivePerspective projectionprojection

zx

x

p

d

p

q −
=

z

x
x

p

p
dq −=⇒

z

y

y
p

p
dq −= :yFor

d>0





















−

=

0/100

0100

0010

0001

d

pP

Tomas Akenine-Mőller © 2002

PerspectivePerspective projectionprojection

� The ”arrow” is the

homogenization

process





















−

=

0/100

0100

0010

0001

d

pP ?=pPp









































−

=

10/100

0100

0010

0001

z

y

x

p
p

p

p

d

pP ⇒





















−

=

dp

p

p

p

z

z

y

x

/ 



















−

−

−

=





















−

−

−

=

1

/

/

1

/

/

/

d

pdp

pdp

pdp

pdp

pdp

zy

zx

zz

zy

zx

q

z

x
x

p

p
dq −=

z

y

y
p

p
dq −=

Tomas Akenine-Mőller © 2002

PerspectivePerspective projectionprojection

� Again, the determinant is 0 (not invertible)

� To make the rest of the pipeline the same

as for orhogonal projection:

– project into unit-cube

� Not much different from Pp

� Do not collapse z-coord to a plane Tomas Akenine-Mőller © 2002

Understanding the projection matrixUnderstanding the projection matrix

� Scaling

� Skew

� Keep z- info









































−

=

10/100

00

00

00

z

y

x

z

y

x

p
p

p

p

d

cs

bs

as

pP ⇒





















−

+

+

+

=

dp

cps

bpps

apps

z

zz

zyy

zxx

/




















+−

+−

+−

=

1

/)(

')/(

')/(

3

2

1

zz

zy

zx

pcpd

bppd

appd

q

6

Tomas Akenine-Mőller © 2002

PerspectivePerspective projectionprojection matricesmatrices

� See ”Från Värld till Skärm” secion 4 for

more details.

� BREAK...

Most of the following slides are from

Ed Angel

Professor of Computer Science, Electrical and Computer

Engineering, and Media Arts

University of New Mexico

Följande slides är enbart till för att ge lite mer kött på

benen om tidigare slides inte räckte till för att förstå.

De förklarar samma sak, fast på ett lite annat sätt och

med mer detaljer. Skall ses som ett valfritt komplement.

/Ulf

Scalars
• Need three basic elements in geometry

–Scalars, Vectors, Points

• Scalars can be defined as members of sets which
can be combined by two operations (addition and
multiplication) obeying some fundamental axioms
(associativity, commutivity, inverses)

• Examples include the real and complex number
systems under the ordinary rules with which we are
familiar

• Scalars alone have no geometric properties

Vector Operations
• Physical definition: a vector is a quantity with two attributes

– Direction

– Magnitude

• Examples include
– Force

– Velocity

– Directed line segments

• Most important example for graphics

• Can map to other types Every vector can be multiplied by a scalar

• There is a zero vector

–Zero magnitude, undefined orientation

• The sum of any two vectors is a vector

v -v αv
v

u

w

Vectors Lack Position

• These vectors are identical

–Same length and magnitude

• Vectors insufficient for geometry

–Need points

Points

•Location in space

•Operations allowed between points and

vectors

–Point- point subtraction yields a vector

–Equivalent to point- vector addition

P=v+Q

v=P- Q

7

Affine Spaces

•Point + a vector space

•Operations

–Vector- vector addition

–Scalar- vector multiplication

–Point- vector addition

–Scalar- scalar operations

• For any point define

–1 • P = P

–0 • P = 0 (zero vector)

Lines

•Consider all points of the form

–P(α)=P0 + α d

–Set of all points that pass through P0 in the

direction of the vector d

Parametric Form

•This form is known as the parametric form
of the line

–More robust and general than other forms

–Extends to curves and surfaces

•Two-dimensional forms

–Explicit: y = kx + m

–Implicit: ax + by +c =0

–Parametric:

x(α) = αx0 + (1- α)x1
y(α) = αy0 + (1- α)y1

Rays and Line Segments

• If α >= 0, then P(α) is the ray leaving P0 in

the direction d

If we use two points to define v, then

P(α) = Q + α (R-Q)=Q+αv

=αR + (1-α)Q

For 0<=α<=1 we get all the

points on the line segment

joining R and Q

Convexity

•An object is convex iff for any two points in

the object all points on the line segment

between these points are also in the object

P

Q Q

P

convex
not convex

Affine Sums

•Consider the “sum”

P=α1P1+α2P2+…..+αnPn

Can show by induction that this sum makes
sense iff

α1+α2+…..αn=1

in which case we have the affine sum of the
points P1,P2,…..Pn

• If, in addition, αi>=0, we have the convex
hull of P1,P2,…..Pn

8

Convex Hull
Consider the linear combination

P=α1P1+α2P2+…..+αnPn

• If α1+α2+…..αn=1
– (in which case we have the affine sum of the points P1,P2,…..Pn)

and if αi>=0, we have the convex hull of P1,P2,…..Pn

• Smallest convex object

containing P1,P2,…..Pn

Planes

•A plane can be defined by a point and two

vectors or by three points

P(α,β)=R+αu+βv P(α,β)=R+α(Q-R)+β(P-Q)

u

v

R

P

R

Q

Triangles

convex sum of P and Q

convex sum of S(α) and R

for 0<=α,β<=1, we get all points in triangle

u

v

P

Normals

• Every plane has a vector n normal (perpendicular,
orthogonal) to it

• From point/vector form

– P(α,β)=R+αu+βv

we know we can use the cross product to find

– n = u × v

• Plane equation:

– n ⋅x – d = 0,

– where d = -n ⋅p and p is any point in the plane

Normal for Triangle

p0

p

1

p2

n

plane n ·(p - p0) = 0

n = (p2 - p0) ×(p1 - p0)

normalize n ←←←← n/ |n|

p

Note that right-hand rule determines outward face

Frames

•A coordinate system is insufficient to

represent points

• If we work in an affine space we can add a

single point, the origin, to the basis vectors

to form a frame

P0

v1

v2

v3

9

Representing one basis in terms

of another

Each of the basis vectors, u1,u2, u3, are vectors that

can be represented in terms of the first basis

u1 = γ11v1+γ12v2+γ13v3
u2 = γ21v1+γ22v2+γ23v3
u3 = γ31v1+γ32v2+γ33v3

v

Matrix Form

The coefficients define a 3 x 3 matrix

and the bases can be related by

a=MTb

















γγγ

γγγ

γγγ

3231

232221

131211

33

M =

Translation

•Move (translate, displace) a point to a new
location

•Displacement determined by a vector d

–Three degrees of freedom

–P’=P+d

P

P’

d

How many ways?

Although we can move a point to a new location in

infinite ways, when we move many points there is

usually only one way

object translation: every point displaced

by same vector

Translation Using

Representations

Using the homogeneous coordinate
representation in some frame

p=[x y z 1]T

p’=[x’ y’ z’ 1]T

d=[dx dy dz 0]T

Hence p’ = p + d or

x’=x+dx
y’=y+dy
z’=z+dz

note that this expression is in

four dimensions and expresses

point = vector + point

Translation Matrix

We can also express translation using a

4 x 4 matrix T in homogeneous coordinates

p’=Tp where

T = T(dx, dy, dz) =

This form is better for implementation because all affine
transformations can be expressed this way and multiple
transformations can be concatenated together



















1000

d100

d010

d001

z

y

x

10

Homogeneous Coordinates

The homogeneous coordinates form for a three dimensional
point [x y z] is given as

p =[x’ y’ z’ w] T =[wx wy wz w] T

We return to a three dimensional point (for w≠0) by

x←x’/w

y←y’/w

z←z’/w

If w=0, the representation is that of a vector

Note that homogeneous coordinates replaces points in three
dimensions by lines through the origin in four dimensions

For w=1, the representation of a point is [x y z 1]

Homogeneous Coordinates

and Computer Graphics

•Homogeneous coordinates are key to all

computer graphics systems

–All standard transformations (rotation,

translation, scaling) can be implemented with

matrix multiplications using 4 x 4 matrices

–Hardware pipeline works with 4 dimensional

representations

–For orthographic viewing, we can maintain w=0

for vectors and w=1 for points

–For perspective we need a perspective division

Rotation about the z axis

• Rotation about z axis in three dimensions leaves all

points with the same z

–Equivalent to rotation in two dimensions in

planes of constant z

–or in homogeneous coordinates

p’=Rz(θ)p

x’=x cos θ –y sin θ

y’ = x sin θ + y cos θ
z’ =z

Rotation Matrix



















θθ

θ−θ

1000

0100

00 cossin

00sin cos

R = Rz(θ) =

Rotation about x and y axes

• Same argument as for rotation about z axis

–For rotation about x axis, x is unchanged

–For rotation about y axis, y is unchanged

R = Rx(θ) =

R = Ry(θ) =



















θθ

θθ

1000

0 cos sin0

0 sin- cos0

0001



















θθ

θθ

1000

0 cos0 sin-

0010

0 sin0 cos

Scaling



















1000

000

000

000

z

y

x

s

s

s

S = S(sx, sy, sz) =

x’=sxx

y’=syx

z’=szx

p’=Sp

Expand or contract along each axis (fixed point of origin)

11

Reflection

corresponds to negative scale factors

originalsx = -1 sy = 1

sx = -1 sy = -1 sx = 1 sy = -1

Inverses

• Although we could compute inverse matrices by

general formulas, we can use simple geometric

observations

–Translation: T-1(dx, dy, dz) = T(-dx, -dy, -dz)

–Rotation: R -1(θ) = R(- θ)

• Holds for any rotation matrix

• Note that since cos(-θ) = cos(θ) and sin(-
θ)=-sin(θ)

R -1(θ) = R T(θ)

–Scaling: S-1(sx, sy, sz) = S(1/sx, 1/sy, 1/sz)

Concatenation

•We can form arbitrary affine transformation

matrices by multiplying together rotation,

translation, and scaling matrices

• Because the same transformation is applied to

many vertices, the cost of forming a matrix

M=ABCD is not significant compared to the cost

of computing Mp for many vertices p

• The difficult part is how to form a desired

transformation from the specifications in the

application

Order of Transformations

•Note that matrix on the right is the first
applied

•Mathematically, the following are equivalent

p’ = ABCp = A(B(Cp))

•Note many references use column matrices
to represent points. In terms of column
matrices

p’T = pTCTBTAT

General Rotation About the

Origin

θ

x

z

y

v

A rotation by θ about an arbitrary axis
can be decomposed into the concatenation

of rotations about the x, y, and z axes

R(θ) = Rz(θz) Ry(θy) Rx(θx)

θx θy θz are called the Euler angles

Note that rotations do not commute

We can use rotations in another order but

with different angles

Rotation About a Fixed Point

other than the Origin

Move fixed point to origin

Rotate

Move fixed point back

M = T(pf) R(θ) T(- pf)

12

Instancing

• In modeling, we often start with a simple

object centered at the origin, oriented with

the axis, and at a standard size

•We apply an instance transformation to its

vertices to

Scale

Orient

Locate

Shear

• Helpful to add one more basic transformation

• Equivalent to pulling faces in opposite directions

Shear Matrix

Consider simple shear along x axis

x’ = x + y cot θ
y’ = y

z’ = z

















 θ

1000

0100

0010

00cot 1

H(θ) =

OpenGL Transformations

Objectives

•Learn how to carry out transformations in

OpenGL

–Rotation

–Translation

–Scaling

• Introduce OpenGL matrix modes

–Model- view

–Projection

OpenGL Matrices

• In OpenGL matrices are part of the state

•Multiple types
–Model- View (GL_MODELVIEW)

–Projection (GL_PROJECTION)

–Texture (GL_TEXTURE) (ignore for now)

–Color(GL_COLOR) (ignore for now)

•Single set of functions for manipulation

•Select which to manipulated by
–glMatrixMode(GL_MODELVIEW);

–glMatrixMode(GL_PROJECTION);

13

Current Transformation Matrix

(CTM)

• Conceptually there is a 4 x 4 homogeneous

coordinate matrix, the current transformation

matrix (CTM) that is part of the state and is applied

to all vertices that pass down the pipeline

• The CTM is defined in the user program and loaded

into a transformation unit

CTMvertices vertices

p p’=Cp
C

CTM operations

• The CTM can be altered either by loading a new

CTM or by postmutiplication

Load an identity matrix: C ← I

Load an arbitrary matrix: C ← M

Load a translation matrix: C ← T

Load a rotation matrix: C ← R

Load a scaling matrix: C ← S

Postmultiply by an arbitrary matrix: C ← CM

Postmultiply by a translation matrix: C ← CT

Postmultiply by a rotation matrix: C ← C R

Postmultiply by a scaling matrix: C ← C S

Rotation about a Fixed Point

Start with identity matrix: C ← I

Move fixed point to origin: C ← CT

Rotate: C ← CR

Move fixed point back: C ← CT -1

Result: C = TR T –1 which is backwards.

This result is a consequence of doing postmultiplications.

Let’s try again.

Reversing the Order

We want C = T –1 R T
so we must do the operations in the following order

C ← I
C ← CT -1

C ← CR
C ← CT

Each operation corresponds to one function call in the
program.

Note that the last operation specified is the first executed in
the program

CTM in OpenGL

•OpenGL has a model-view and a projection

matrix in the pipeline which are

concatenated together to form the CTM

•Can manipulate each by first setting the

correct matrix mode

Rotation, Translation,

Scaling

glRotatef(theta, vx, vy, vz)

glTranslatef(dx, dy, dz)

glScalef(sx, sy, sz)

glLoadIdentity()

Load an identity matrix:

Multiply on right:

theta in degrees, (vx, vy, vz) define axis of rotation

Each has a float (f) and double (d) format (glScaled)

14

Example

• Rotation about z axis by 30 degrees with a fixed

point of (1.0, 2.0, 3.0)

• Remember that last matrix specified in the program

is the first applied

glMatrixMode(GL_MODELVIEW);

glLoadIdentity();

glTranslatef(1.0, 2.0, 3.0);

glRotatef(30.0, 0.0, 0.0, 1.0);

glTranslatef(-1.0, -2.0, -3.0);

Arbitrary Matrices
•Can load and multiply by matrices defined in
the application program

•The matrix m is a one dimension array of 16

elements which are the components of the
desired 4 x 4 matrix stored by columns

• In glMultMatrixf, m multiplies the existing

matrix on the right

glLoadMatrixf(m)

glMultMatrixf(m)

Matrix Stacks
• In many situations we want to save

transformation matrices for use later

–Traversing hierarchical data structures (Chapter 10)

–Avoiding state changes when executing display lists

•OpenGL maintains stacks for each type of

matrix

–Access present type (as set by glMatrixMode) by

glPushMatrix()

glPopMatrix()

Reading Back Matrices

• Can also access matrices (and other parts of the

state) by query functions

• For matrices, we use as

glGetIntegerv

glGetFloatv

glGetBooleanv

glGetDoublev

glIsEnabled

double m[16];

glGetFloatv(GL_MODELVIEW, m);

Using the Model-view

Matrix

• In OpenGL the model-view matrix is used to

–Position the camera

• Can be done by rotations and translations but

is often easier to use gluLookAt

–Build models of objects

• The projection matrix is used to define the view

volume and to select a camera lens

Quaternions

• Extension of imaginary numbers from two to three
dimensions

• Requires one real and three imaginary components
i, j, k

• Quaternions can express rotations on sphere
smoothly and efficiently. Process:

–Model-view matrix → quaternion

–Carry out operations with quaternions

–Quaternion → Model-view matrix

q=q0+q1i+q2j+q3k

15

Computer Viewing

Ed Angel

Professor of Computer Science,

Electrical and Computer Engineering,

and Media Arts

University of New Mexico

Objectives

• Introduce the mathematics of projection

• Introduce OpenGL viewing functions

•Look at alternate viewing APIs

Computer Viewing

•There are three aspects of the viewing

process, all of which are implemented in the

pipeline,

–Positioning the camera

• Setting the model- view matrix

–Selecting a lens

• Setting the projection matrix

–Clipping

• Setting the view volume

• (default is unit cube, R3, [-1,1])

Default Projection

Default projection is orthogonal

clipped out

z=0

2

Moving the Camera Frame

• If we want to visualize object with both positive and

negative z values we can either

–Move the camera in the positive z direction

• Translate the camera frame

–Move the objects in the negative z direction

• Translate the world frame

•Both of these views are equivalent and are

determined by the model-view matrix

–Want a translation (glTranslatef(0.0,0.0,-d);)

–d > 0

Moving the Camera

•We can move the camera to any desired

position by a sequence of rotations and

translations

•Example: side view

–Rotate the camera

–Move it away from origin

–Model- view matrix C = TR

16

OpenGL code

•Remember that last transformation specified

is first to be applied

glMatrixMode(GL_MODELVIEW)

glLoadIdentity();

glTranslatef(0.0, 0.0, -d);

glRotatef(90.0, 0.0, 1.0, 0.0);

The LookAt Function

• The GLU library contains the function gluLookAt to

form the required modelview matrix through a

simple interface

• Note the need for setting an up direction

• Still need to initialize

–Can concatenate with modeling transformations

• Example: isometric view of cube aligned with axes
glMatrixMode(GL_MODELVIEW):

glLoadIdentity();

gluLookAt(1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0., 1.0. 0.0);

gluLookAt

glLookAt(eyex, eyey, eyez, atx, aty, atz, upx,

upy, upz)

Other Viewing APIs

•The LookAt function is only one possible

API for positioning the camera

•Others include

–View reference point, view plane normal, view

up (PHIGS, GKS- 3D)

–Yaw, pitch, roll

–Elevation, azimuth, twist

–Direction angles

OpenGL Orthogonal Viewing

glOrtho(left,right,bottom,top,near,far)

near and far measured from camera

OpenGL Perspective

glFrustum(left,right,bottom,top,near,far

)

17

Using Field of View

•With glFrustum it is often difficult to get the

desired view

•gluPerpective(fovy, aspect, near,

far) often provides a better interface

aspect = w/h

front plane

Projections explained differently

• Read the following slides about orthogonal and

perspective projections by your selves

• They present the same thing we went through on

the lecture, but explained differently

/Ulf

Projections and Normalization

•The default projection in the eye (camera) frame

is orthogonal

•For points within the default view volume

•Most graphics systems use view normalization

–All other views are converted to the default view by

transformations that determine the projection matrix

–Allows use of the same pipeline for all views

xp = x

yp = y

zp = 0

Homogeneous Coordinate

Representation

xp = x

yp = y

zp = 0

wp = 1

pp = Mp

M =



















1000

0000

0010

0001

In practice, we can letM = I and set

the z term to zero later

default orthographic projection

Simple Perspective

•Center of projection at the origin

•Projection plane z = d, d < 0

Perspective Equations
Consider top and side views

xp =

dz

x

/

dz

x

/
yp =

dz

y

/
zp = d

18

Homogeneous Coordinate Form

M =



















0/100

0100

0010

0001

d

consider q = Mp where



















1

z

y

x



















dz

z

y

x

/

q = ⇒⇒⇒⇒ p =

Perspective Division
•However w ≠ 1, so we must divide by w to

return from homogeneous coordinates

•This perspective division yields

the desired perspective equations

•We will consider the corresponding clipping

volume with the OpenGL functions

xp =
dz

x

/
yp =

dz

y

/
zp = d

Normalization

•Rather than derive a different projection

matrix for each type of projection, we can

convert all projections to orthogonal

projections with the default view volume

•This strategy allows us to use standard

transformations in the pipeline and makes for

efficient clipping

Pipeline View

modelview

transformation

projection

transformation

perspective

division

clipping projection

nonsingular

4D → 3D

against default cube
3D → 2D

Notes
•We stay in four-dimensional homogeneous
coordinates through both the modelview and
projection transformations

–Both these transformations are nonsingular

–Default to identity matrices (orthogonal view)

•Normalization lets us clip against simple cube
regardless of type of projection

•Delay final projection until end

–Important for hidden- surface removal to retain
depth information as long as possible

Orthogonal Normalization

glOrtho(left,right,bottom,top,near,far)

normalization⇒ find transformation to convert
specified clipping volume to default

19

Orthogonal Matrix
• Two steps

–Move center to origin

T(- (left+right)/2, - (bottom+top)/2,(near+far)/2))

–Scale to have sides of length 2

S(2/(left- right),2/(top- bottom),2/(near- far))



























−

+

−

−

+
−

−

−

−
−

−

1000

2
00

0
2

0

00
2

nearfar

nearfar

farnear

bottomtop

bottomtop

bottomtop

leftright

leftright

leftright

P = ST =

Final Projection

• Set z =0

• Equivalent to the homogeneous coordinate

transformation

• Hence, general orthogonal projection in 4D is



















1000

0000

0010

0001

Morth =

P = MorthST

General Shear

top view side view

Shear Matrix

xy shear (z values unchanged)

Projection matrix

General case:



















−

−

1000

0100

0φcot10

0θcot01

H(θ,φ) =

P = Morth H(θ,φ)

P = Morth STH(θ,φ)

Effect on Clipping
•The projection matrix P = STH transforms

the original clipping volume to the default

clipping volume

top view

DOP
DOP

near plane

far plane

object

clipping

volume

z = -1

z = 1

x = -1
x = 1

distorted object

(projects correctly)

Simple Perspective

Consider a simple perspective with the COP at the

origin, the near clipping plane at z = - 1, and a 90

degree field of view determined by the planes

x = ±z, y = ±z

20

Perspective Matrices

Simple projection matrix in homogeneous

coordinates

Note that this matrix is independent of the far

clipping plane



















− 0100

0100

0010

0001

M =

Generalization



















− 0100

βα00

0010

0001

N =

after perspective division, the point (x, y, z, 1) goes to

x’’ = x/z

y’’ = y/z

Z’’ = -(α+β/z)

which projects orthogonally to the desired point

regardless of α and β

Picking α and β
If we pick

α =

β =

nearfar

farnear

−

+

farnear

farnear2

−

∗

the near plane is mapped to z = -1

the far plane is mapped to z =1

and the sides are mapped to x = ± 1, y = ± 1

Hence the new clipping volume is the default clipping volume

Normalization Transformation

original
clipping
volume

original object new clipping
volume

distorted object

projects correctly

Normalization and

Hidden-Surface Removal
• Although our selection of the form of the
perspective matrices may appear somewhat
arbitrary, it was chosen so that if z1 > z2 in the
original clipping volume then the for the
transformed points z1’ > z2’

• Thus hidden surface removal works if we first apply
the normalization transformation

• However, the formula z’’ = - (α+β/z) implies that the
distances are distorted by the normalization which
can cause numerical problems especially if the near
distance is small

OpenGL Perspective
•glFrustum allows for an unsymmetric

viewing frustum (although gluPerspective

does not)

21

OpenGL Perspective Matrix

•The normalization in glFrustum requires

an initial shear to form a right viewing

pyramid, followed by a scaling to get the

normalized perspective volume. Finally, the

perspective matrix results in needing only a

final orthogonal transformation

P = NSH

our previously defined

perspective matrix
shear and scale

Why do we do it this way?

•Normalization allows for a single pipeline

for both perspective and orthogonal viewing

•We stay in four dimensional homogeneous

coordinates as long as possible to retain

three-dimensional information needed for

hidden-surface removal and shading

•We simplify clipping

